数据分析与知识发现
    主页 > 综合新闻 >

BI&数据分析平台产品发展趋势

编辑导语:数据分析,是用统计分析方法对收集来的大量数据进行分析,提取有用信息从而形成结论。简单来说,就是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律。随着数据分析被越来越多的企业所采用,出现了越来越多的数据分析平台,本文作者就对BI&数据分析平台产品的发展趋势进行了分析。

近十几年来,在互联网技术和业务快速发展的同时,商用BI&数据分析产品和行业发生了翻天覆地的变化。

十几年前,传统BI平台厂商占据着大部分市场;2010年前后,以Tableau为首的现代BI&数据分析平台厂商开始快速崛起,最后抢占了绝大部分的市场。

是什么让现代BI获得了企业和组织的青睐,最终在市场竞争中获胜?BI平台的发展趋势,又能给我们什么样的启示?通过对Garnter魔力象限和相关资料的解读,我总结出以下几点:

笔者在公司负责内部数据分析类产品的建设,后续的分析将围绕数据使用进行,其它如厂商市场策略、数据技术方面的内容将不会涉及。

一、数据使用的门槛不断降低

2005年来,技术发展和产品设计思路的创新,让BI平台在产品部署、数据的准备和使用方面的门槛都大幅降低,让业务人员以更低的成本获得所需的数据。

1.? 从依赖IT部门到自助分析

企业中BI平台的用户,可以根据工作职责分到两类部门:业务部门和IT部门。

1)业务部门

是企业中直接负责业务经营的部门,业务部门往往直接面对企业的用户和市场,直接对企业的业务目标负责。业务部门会生产出一系列原始数据,并利用分析这些数据得出的结论优化业务结果。

2)IT部门

一般由技术人员或专业数据分析师组成,他们具备专业技术知识,能进行BI平台的部署和维护;他们也能够根据业务需求,进行数据分析和报表的开发。

IT部门主要的工作职责,是通过辅助和支撑业务部门的工作,间接推动公司的业务发展。

传统BI平台产品设计的重点是产品的标准化和功能性,而没有在易用性上投入足够的精力,导致传统BI平台有着较高的使用门槛,只有经过训练的IT部门的技术人员才能进行数据的开发和维护。

因此,所有业务部门的数据报表需求,都被集中到IT部门进行排期开发,IT部门成为了整个公司数据化的瓶颈。

对于IT部门,需求沟通和开发工作量巨大,每天疲于奔命;对于业务部门,业务需求沟通开发周期很长,无法满足业务发展对数据的需求。

尤其是业务方面的一些数据探索类分析需求,在这样的时间周期下,近乎无法实施,拖慢了整个组织的运营效率,更别提进入快速试错,迭代认知的正循环。

以Tableau为首的现代BI平台,被称为敏捷BI或者自助BI。这类BI产品提供了轻量的部署方式、易用的数据源连接功能和通过拖拉拽进行交互式数据可视化的能力,降低了BI平台的使用门槛。

业务部门的人员经过一定的学习就可以摆脱对IT部门的依赖,自行进行数据准备,数据报表的创建和数据分析。将原来按月、按周计算的开发周期,缩短到按天甚至按小时、分钟计算,数据需求实现的周期有了数量级级别的降低。

去IT部门中心化,让组织内部的数据应用的广度和深度都有所提升。

广度方面,原本IT部门资源有限,组织的数据使用场景更多的集中在企业经营的核心领域,比如:财务、销售、业绩管理这些直接跟公司业绩直接相关的领域;其它方面的数据应用,投入相对较少。

现代BI平台的诞生,让营销、供应链、仓储、HR、风险管理等等领域的负责部门获得搭建自身的数据分析体系的能力。

数据应用的深度的增加可以从两个角度理解:

数据覆盖人员层次的纵深增加。一开始数据只能提供给高级管理者,作为企业的重要决策参考使用;数据门槛降低后,数据可以渗透到一线员工的具体工作中,让更多人形成分析-行动-反馈的正循环;

数据在决策过程的覆盖率增加。数据在组织中的主要用途是减少决策的不确定性,提升决策质量。在决策链路或推理过程的诸多论证步骤中,得到的数据支撑越多越有力,决策的可靠性就会越高,最后决策的效果就会越好。

虽然去IT部门中心化的开发方式提升了业务数据需求的实现速度,帮助现代BI平台产品在市场竞争中获胜。

但各个部门独立进行数据准备和分析,缺乏统一的管理。在数据应用规模增大后,导致了数据的重复开发、数据口径不一致等诸多问题。