数据分析与知识发现
    主页 > 综合新闻 >

9张图揭秘:优秀的数据分析项目,这样做!

问题场景:某互联网大厂TOB业务线,可以向平台商家提供SaaS/Paas类服务,但苦于销售水平不高,沟通话术质量不佳,转化率不足。现计划做话术培训,提升客户转化率。

1原始模型

最简单的做法,定义话术A,话术B,俩版本。直接看转化率,哪个高了用哪个就好了!(如下图)

那么,这么做有啥问题不?

2高级建筑

最简单的做法,可能有几层问题:

最后,得到的结果可能如下图,为每一类销售,每一种客户配置合理的话术,最大化产出。

3第一层地基

问个简单的问题:销售的SABC级别是咋来的?

既然有分级,那么得有判定标准。

而构建判断标准本身,就是一个大工程

比如:

1、是否业绩表现好的,就是好销售?

2、意向、签约、回款、复购,哪个方面能证明他是好销售?

3、以上四个方面,每个都至少有数量和金额两个指标……

4、如果选签约和回款,两个指标交叉就是一个矩阵,怎么定义好?(如下图)

5、如果是三个指标呢?如果是四个指标呢?

以上所有问题,都有的一番纠结,才有产出。 现在简化问题,假设就考察签约金额。签约金额高的就是好销售,那么问题又来了:考察多长时间内的表现?一加入时间维度,新的纠结又开始了:

比如:

考察1个月算不算数?3个月?半年?考察1个月,这个月好,下个月不好,到底算不算好?考察3个月,是考察总量,平均值,还是单月达标次数?考察6个月,稳定性好,越来越好,先好后差的,要不要作区分?(如下图)

以上所有问题的处理,都是为了得出一个简单的业务员分级标签。 同样的问题,在客户那里也存在,一模一样的纠结。

比如评定客户等级:

1、考察哪些指标?

2、考察多长时间?

3、指标到什么水平算好?

4、考察期波动怎么处理?

5、在未签约前要不要做预测?咋预?

6、要不要在签约进度中修正预测?咋修正?

都分析清楚了,才能有准确的客户评级,特别是售前评级。

正是因为以上工作太过纠结。所以衍生出3种常见的处理办法:

1、从简单到复杂:先做单指标分类,再慢慢加,迭代几次。

2、先抓典型再总结:比如先让业务方标注几个正样本,然后研究他们的特点。

3、从结果倒推:比如业务方KPI是签约额,那为了达成这个目标,得做到多少。 每一种方法都有各自的工作办法,这里先不一一展开。只是为了让大家感受到:为了获取一个准确的分类,需要劳民伤财的大量工作,不然你就只能做最简单的,充满bug的模型。 然而,就算这样,问题解决了吗?

4第二层地基

问:话术A 这个分类又是怎么来的?实际上销售卖东西很少只说一句话。特别是toB类销售,前前后后得说很多东西。

这里至少有四个部分:

1、开场问候:开场寒暄,引入话题

2、产品介绍:主动介绍产品特点,优势,对客户的好处

3、问题答疑:针对客户的问题,解答客户疑惑4、促单话术:催着客户赶紧下单 这里又衍生出来两个问题:第一, 这四个部分的话术如何分类,上标签,加入到分析之中。第二, 如何知道销售说了什么。

针对问题一,话术本身如何打标签,如何分类。可以做以下动作:

1、产品介绍的版本

2、客户问题点:功能、价格、体验、案例、系统接口

3、促单的话术分类:按项目进度、按优惠、按资源控制

总之,有了这些扎实的基础工作,才能有最初的话术A这一个分类标签。这是比较好处理的。问题二,更纠结。

5第三层地基

针对问题二,核心在于:数据怎么采集。

1、如果有SCRM系统,那么交易流程可以系统化实现,可以一定程度补足数据,比如展示了哪些案例(产品介绍环节)调用了哪些资料(问答环节)查询了哪些优惠(促单环节)

2、如果没有系统支持,那就只能从其他行为反推,比如销售培训,比如销售策略,比如申请体验demo类型、数量,比如申请的优惠。

那么,又衍生出:

1、销售培训记录,培训类型标签库

2、销售策略记录,策略分类标签库