数据分析与知识发现
    主页 > 综合新闻 >

做有用的数据分析,从做好MVP开始

编辑导语:数据分析中的MVP就是在数据正式生产出来之前,提前进行检验,确认准确性,所以在数据分析领域中经常会使用这种方式,根据提前输出的进行更改,保证后续的结果;本文作者分享了关于数据分析中的MVP方法,我们一起来了解一下。

很多同学雄心勃勃想在工作中做出成绩,这里推荐数据分析的MVP方法,能为大家的工作保驾护航。

一、数据分析的MVP是什么

MVP(Minimum Viable Product)原本是应用于产品设计的方法,指在正式推出产品前,先推出一个版包含核心功能的简单版本,测试用户需求与反馈,从而快速判断产品是否符合市场需求,做出调整。

数据分析的MVP方法,是在数据正式生产出来以前,先根据数据需求和使用场景,提供虚拟的数据结果,从而检验数据有效性,发现真正的数据需求。

这套方法在数据分析领域非常好使!因为它能解决数据分析的核心难题:做了半天,没有屁用。数据分析背后的《统计学》《数学》《运筹学》《博弈论》《机器学习》…各种理论多了去了,因此极易引发自嗨。

做数据的自己嗨得不行,各种理论算的腾挪跌宕,到了用户那里:

一键三连,这项目就必败无疑了。

数据分析的MVP方法,目的就是提前梳理清楚:数据如何对业务有用的逻辑,从而避免上述悲剧;而看似牛逼,实则然并卵的数据分析,在现实中多的很……

二、1.0版本MVP

举个简单例子,比如互联网平台-广告销售团队提出:“要建立业务员用户画像,掌握每个业务员的性别、年龄、行为、转化率,以提高业绩”。

这时候咋办?

如果用MVP思路,先不要急着去跑数,也不要急着列一大堆“用户画像标准指标”,而是直接拿着业务方提的最初的需求:“性别、年龄、行为、转化率,以提高业绩”直接给一个虚拟结果,然后确认:“如果我真的提供这些东西,你们真的能提高业绩?”——让他确认。

至少只基于这一句话来看,数据分析能输出的结论是完全无用的版本的MVP测试不通过,要么放弃这个需求,要么继续想想:该怎么更好的抓用户痛点。这样把数据推向2.0版本。

三、2.0版本MVP

进一步看,1.0版本的问题在于:没有清晰目标。所谓画像指标一大堆,到底看了要干啥没想清楚。如果聚集目标,比如:找到业绩好的业务员。这样就更清晰了一步。

这里就需要引入更多分析,因为“好”“不好”本身就需要做分析:

在这个阶段,做MVP时,可以直接把一些可预计的,很纠结的问题提前丢出来,和业务方一起提前思考应对方案;而不是等着跑了一大堆数据,自己闷头计算好几轮以后再讨论;越早讨论,越能提前刨累,避免无用功。

比如评价:“好/坏”中常见的多指标重叠问题(如下图)。

比如业绩表现不稳定问题(如下图):

至于和本阶段无关的指标,可以大胆做减法,丢了再说。

有新的目标出来,再围绕新的目标组织数据。避免不分青红皂白,先捞一堆数再说的做法——数据分析师不能按时下班,都是被这些破事折腾的。

把这些梳理清楚,就有了2.0版本的MVP。(如下图)

看起来,似乎已经比1.0版清晰了很多,删减了很多无效指标,聚焦到一个明确的目标上。

注意,这时候仍然还没有跑任何数据,只是基于经验的虚拟,但是已经能把“早就知道了”的数据暴露出来,并且能过滤掉“其实没啥用”的指标,并且把可能有歧义的地方以具体案例的形式具体讨论,从而极大规避问题。

但是注意,这还不是一个合格的MVP,因为知道谁好谁坏,又能怎样?知道李四是真的好了,大家就能成为李四吗?还是根本李四是不可复制的,我得找更多类似李四的人进来?

这些问题都没有答案。所以此时还是无法直接得出:这数据就能提高业绩。MVP测试不通过,继续!

四、3.0版本MVP

只告诉谁好,谁不好是不能提升业绩的。业绩是一线做出来的,一线需要的是SOP,是弹药,因此数据要进一步做,比如:

  • 优秀标杆的数据指标(呼叫次数?时间分配?跟进机会?)
  • 优秀标杆的目标客户(是否特定客户容易成功?)