数据分析与知识发现
    主页 > 综合新闻 >

中科易研:怎么写好一份数据分析报告

一、我认为一个好的分析报告应该要的结构

二、所有的分析报告都有一个大前提

--- 了解报告的受众

知道他们是谁,喜欢什么样的风格,怎样的叙事过程,才好判断报告的载体和形态。

是用excel,还是用word,或者PPT和key note ?

是喜欢鲜艳的对比色,还是稳重的商务色 ?

是总分,还是总分总,还是总分分 ?

是喜欢开门见山,还是喜欢先扬后抑 ?

是希望逻辑严整,还是喜欢单点突破按照模块去拆解?

是喜欢专业的词汇,还是通俗易懂的大白话?

根据受众的数据理解能力,去判断用哪种图表进行呈现,做合适的解读。

——如何了解?

在日常对接的琐碎数据需求过程中,带入以下几个层面的理解:

① 需求的业务方是谁,他们为什么需要这些数据,怎么用这些数据(看 or 读);

② 通过周期性的需求对接,在哪些业务团队内可以拥有话语权,在哪些场景下可以拥有数据的驱动决策权;

③ 摸清一个企业的组织架构,哪些高层会真正用数据,看数据的习惯和偏好。

三、汇报的9大要素

1)背景

脱离了业务背景的分析过程,很容易被质疑,站不住脚。

为什么要做这件事情?谁的需求?做完这个事情之后能干什么?资源分配如何?

2)目标

可以把目标拆解成为几个阶段,本期的目的是什么,之后的计划是什么。

因为在实际业务过程中,分析的过程往往是循循渐进的,不可能一次性的就把一个问题剖析的特别清楚,分阶段分步骤的完成某一个事情。

3)重要结论

按照写议论文的方式,总分总,是最常见的结构,总的部分,就是结论了。通过哪些数据去抽象成为问题、异常、趋势,站在业务侧的角度进行具象,形成典型的案例,凝练语言和话术。

结论前置的好处,是帮助读/看报告的人节省时间,快速聚焦到结论事项上。

如果本身的话语权足够大的话,还能减少决策链路,直接进行策略抉择,少了很多环节。

举个例子:通过对各省用户在客服部门的诉求信息分析,发现湖南和吉林两省的用户体量大(x),新用户的占比高(x%),在平台入驻、协议签订、商品发布几个环节的问题量,高于平台平均水准x%。

原因:经过对数据的拆解,在两省的培训材料少、知识库覆盖面比较低,语料素材匹配度不高;

策略:建议培训部门加强对知识库、语料的建设,并针对两省用户的问题,制定相应的策略;

价值:通过对知识体系的完善,能够减少客服人员在基础问题上的人力投入,加快问题响应解决率,从而提升用户的使用满意度。

4) 问题vs论点vs论据

大部分情况下,一般的数据分析到这里就结束了,因为是总分的关系,只需要暴露问题,至于问题的解决,是依赖于其他的团队,或者部门的领导去拍板。

针对前面的结论,对每一项分开进行阐述,支撑起重要结论的论点分别是什么,以及对应的论据。

在这个环节过程里面,所需要组织的内容就是一套标准的数据分析过程,即:

数据采集-数据处理-数据统计-数据可视化-数据结果

需要强调的是,在整个分析的过程里面,最好能够提前明确好统计的核心指标和维度。

看待问题的视角有很多,所以需要提前定下来一个框架,从主视角、第二视角去对指标进行剖析。

分析的方法,就不在报告层面上展开了,会在另外一个部分里面体现。

5)小结

熟悉业务多一点的分析师,会看的更远一些,从业务的视角尝试进行数据解读,即根因分析,先定义异常,然后去解释异常,再之后去阐述异常。

针对重要结论中的其他次要结果进行归纳。如果说重要结论是给老板看的,那小结的部分是给中高层的管理者看的,他们必须要明白数据的构成,前后的逻辑关系,以及数据之间的勾稽关系。

值得说的一个点在于,不管通过数据分析得出来的结果如何,都会对应一套说辞。如果数据呈现的结果是趋好的,那为什么好,在哪些层面上做的比较好,为什么?

是因为产品做了一部分改动,发了新的版本、优化了部分模块、改善了用户体验?还是因为运营做了一部分活动,强化了用户的感知。或者是因为市场环境发生了变化,促使了用户不得不去使用。

如果数据呈现的结果是不好的,那为什么不好,在哪些细节上可以体现出来,为什么?